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Computation using Latency Dynamics in Living and Artificial Neural Networks 
Riley T. Zeller-Townson, G. Kumar Venayagamoorthy, Steve M. Potter

Georgia Institute of Technology, Atlanta, GA

Spiking Neural Networks use the precise timing of action potentials to convey meaning.  The 
conduction delays between neurons are one set of parameters that can be tuned to improve 
network performance on computational tasks, however no biologically inspired delay learning rules 
have been adopted by the artificial neural network community.  This work shows the computational 
properties of delay update rules that are based on how delay change in living neural networks, as 
well as how the actual biological data can be used to improve performance for a prediction task.

Conduction delays were measured through extracellular stimulation 
and recording of action potentials.  Dissociated cortical cultures were 
grown on Micro Electrode Arrays (MEAs).  Electrical stimulation and 
extracellular recording were performed with the open-source 
electrophysiology system NeuroRighter.  Stimulation was performed in the 
presence of synaptic blockers to prevent spontaneous action potentials.  
Delays were measured by finding the time between pulsatile electrical 
stimulation (simulating spike initiation) on one electrode in the dish, and 
detection of a reliably evoked action potential elsewhere in the MEA.  This 
time is referred to as action potential latency (left), and is a direct measure 
of how long an action potential takes to travel along an section of axon.

The reservoir computing approaches shown here are preliminary work that shows 
what sort of information is passed, and what sorts of transforms are being applied by 
these dynamics.  The more interesting problem is the next one, which is how living 
neural systems use these dynamics.  At the very least, we have presented a 
suggestion for how delays could be used in artificial systems.  The more useful 
conclusion is that we have shown that there are ways these dynamics can be used, 
suggesting that the biology could be exploiting an already present resource.  We 
doubt that the methods we have shown here are representative of exactly how 
biological systems use these dynamics, but they are a proof of concept that these 
dynamics could be a vital part of neural computation.

Latencies are an information perserving transform of firing rate.  Stimulation frequency can be 
modulated by altering the duration of the pauses between stimuli.  In the figure above, a low frequency 
sinusoid (1/128 hz) is used to modulate stimulation frequency between 1 and 30 hz.  (Above, left) 
latencies recorded on several recording electrodes (each electrode is given a different color) replicate 
aspects of the stimulation modulating signal.  In this way, latencies can be thought of as a transform of 
stimulation frequency, or firing rate.  Though this transform clearly has non-linear components, if one 
choses stimulation sequences carefully to prevent latencies from entering the intermittent regime, this 
transform closely resembles a low-pass filter (above, right). 

Latency dynamics interact with Spike Timing 
Dependent Plasticity.  By adding a simple, linear model of 
latency changes to a common model of STDP, firing rate 
becomes a factor that can be used to manipulate synaptic 
plasticity, leading to an increase in synaptic depression at 
high firing rates.
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Latency dynamics 
increase network 
memory in a 
Biologically-Inspired 
Artificial Neural 
Network.  We 
adopted the method presented in Johnson et al for performing prediction with a 
biologically inspired artificial neural network.  Briefly, 96 spiking neurons were 
used to encode terminal voltages and turbine speeds for a 4 generator simulated 
power grid.  These 'sensory neurons' projected into a recurrent 'reservoir' of 
1000 spiking neurons.  Firing rates for all 1096 neurons were collected and 
mapped onto a prediction using either linear regression (open dots) or a MLP 
(closed dots).  In this experiment, both prediction (regression target is the the 
terminal voltage of a generator some number of samples ahead) and memory 
(regression target is the terminal voltage of a generator some number of 
samples in the past) were tried.  The network that used a simple model of 
dynamic delays (blue) performed equally well to the network that did not use 
dynamic delays (green) on the prediction task.  However, the dynamic delay 
network performed with 21% less error, on average, on the memory task.  

Latencies tend to increase during repetetive stimulation (left).  When stimulating a neuron 
at rates greater than 5 hz, latencies will increase until reaching an 'intermittent regime' of 
behavior, where latency stops increasing and becomes more variable, and conduction 
becomes less reliable.  While generally a decrease in stimulation frequency is necessary to 
bring a neuron out of this mode of behavior, we 
have observed latencies spontaneously 
decreasing under constant stimulation 
frequency (right).

The rate-latency transform can be used to project low dimensional inputs into a high 
dimensional feature space.  Latencies measured from live neurons growing in an MEA were 
used as part of a prediction task.  A) generator speed was encoded by first slowing the signal 
down by a factor of 400, and then mapping the signal onto a stimulation rate.  B) A pulsatile 
stimulation train was then built using this modulation scheme.  C) Latencies of action potentials 
were recorded in vitro responded to this modulated stimulation. D) Latencies were then filtered, 
and mapped onto generator speed using linear regression- blue is the target, red is the 
estimate based on regression.  E) This task was performed at different 'difficulties' by predicting 
multiple time steps ahead (horizontal axis), and using different feature sets (latencies only, firing 
rate only, or both sets).  It was found that while firing rate alone was better at prediction than 
latency alone, the combination of the two substantially decreased error when predicting several 
time steps ahead, indicating that latency contains information that is complementary to firing 
rate for this prediction task.


