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𝑛_𝑙𝑖𝑛𝑒𝑠

𝑖=1

 

                           𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙= 𝑤𝑃𝑔  𝑃𝐺𝑖

𝑛𝑔𝑒𝑛

𝑖=1

+ 𝑤𝑉𝑔  𝑉𝐺𝑖

𝑛𝑔𝑒𝑛

𝑖=1

                          

 𝑈𝑟𝑒𝑔 = 𝑤𝑉  ∆𝑉𝑖
𝑛_𝑏𝑢𝑠
𝑖=1 +𝑤𝑡𝑖𝑒  ∆𝑃𝑖 +

𝑛_𝑡𝑖𝑒
𝑖=1 𝑤𝑓𝑟𝑒𝑞 ∆𝑓  

An adaptive, optimal, real-time controller based on 
adaptive critics design called dynamic stochastic optimal 
power flow (DSOPF) controller is proposed. Stochastic 
nature in power system can arise as a result of load and 
generation stochastic behaviors and due to random noise 
in PMU data which arises due to communication noise and 
measurement error. 

DSOPF controller can perform real-time control action but 
system wide information cannot be made available to 
DSOPF controller in real-time because of power system 
communication delays which can range from a few 
milliseconds to several seconds depending on distance and 
communication media. 

If state variables can be predicted ahead of time, then 
communication delay can be compensated for. 

Hence, a scalable wide area monitoring system that can 
predict state variables ahead of time is developed. 
Scalability is achieved by using cellular architecture called 
cellular computational network (CCN). This module can 
effectively compensate for communication delays and 
hence can enable DSOPF controller to perform real-time 
control with system wide information.  
  
 

Test System Cellular MLP Equivalent single MLP 

12-bus  

(4 Generator)     

  

  

n=6,m=12,r=1, N=4 

  

No of weights= 336 

n=16,m=32,r=4 

  

No of weights=640 

68-bus  

(16 Generator) 

  

N=6,m=12,r=1,N=16 

  

No of weights=1344 

N=64,m=128,r=16 

  

No of weights=10240 

n- no of input neurons, m- no of hidden layer neurons, r- no of 

output neurons, 

 N- no of cells (applicable only to cellular structure) 
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The figure shows bus voltage prediction layer for the test system. Cells are 
superimposed on top of one line diagram to show how topology is captured in 

CCN framework . Connectivity between cells are shown as directed arrows. 
Schematic diagram of DHP neurocontroller 

Traditional power system operation-control structure and proposed 
structure for  a scalable DSOPF real-time control. 

The model network will learn system dynamics and will 
predict state variables for next time step. The actor 
formulates the best possible control strategy, given the 
current state of the system and its expected course 
 
The reference set points viewed as optimal control signals 
by the actor will be evaluated by critic network with 
derivative of cost-to-go function J.  

𝐽 𝑘 = 𝛾𝑖 . 𝑈(𝑘 + 𝑖)
∞

𝑖=1
 

In theory, if the critic weights converged to the right value, then the 
function J would serve as the Lyapunov function guaranteed to stabilize 
the overall system, if the system is controllable. 
 
The critic and actor will work in tandem to determine control variables 
that would yield minimum value for derivative of cost-to-go function. 

 
 

Cellular Computational networks, cells in a layer 
are grouped together based on the state variable 

predicted. 
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