
70 IEEE power & energy magazine september/october 20121540-7977/12/$31.00©2012 IEEE



One Step 
Ahead

Short-Term Wind Power Forecasting 
and Intelligent Predictive Control 
Based on Data Analytics

By Ganesh Kumar Venayagamoorthy, 
Kurt Rohrig, and István Erlich

T
THE INTELLIGENT INTEGRATION OF WIND POWER INTO THE EXISTING ELECTRICITY

supply system will be an important factor in the future energy supply in many countries. Wind power gen-

eration has characteristics that differ from those of conventional power generation. It is weather dependent 

in that it relies on wind availability. With the increasing amount of intermittent wind power generation, 

power systems encounter more and more short-term, unpredicted power variations. In the power system, 

supply and demand must be equal at all times. Thus, as levels of wind penetration into the electricity 

system increase, new methods of balancing supply and demand are necessary.

Accurate wind power forecasting methods play an important role in addressing the challenge of balanc-

ing supply and demand. Forecasting is required to maximize the integration of a high level of wind power 

penetration into an electricity system because it couples weather-dependent generation with the planned and 

scheduled generation from conventional power plants and the forecast electricity demand. The latter is pre-

dictable with suffi cient accuracy. Even with state-of-the-art wind forecasting methods, the hour-ahead pre-

diction errors for a single wind plant are still around 10–15% with respect to actual production. Wind power 

prediction determines the need for balancing energy and, hence, the cost of wind power integration. In coun-

tries such as Denmark, Germany, Spain, and the United States, wind power prediction is a critical component 

of grid and system control. The short-term energy balancing of existing electricity supply systems depends 

on automatic generation control (AGC), which cannot regulate transmission line fl ows. Most regional voltage 

controllers (RVCs) are capable of regulating only the primary bus voltage and do not result in any voltage 

enhancement at other buses. With a high level of wind power penetration, short-term transmission line over-

loads and voltage violations may occur because of the limited adaptation capabilities of the AGCs and RVCs.

A high degree of wind power integration without intelligent control may result in power system stability 

issues and penalties that cause wind farm owners to lose revenue. Real-time operation time frames require 

short-term wind power prediction on the order of seconds, minutes, and a few hours, as well as the integra-

tion of that prediction into the control room environment. Short-term wind power forecasting based on the 

current status of wind power plants (WPPs)—and the application of such forecasting in the development 
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of intelligent predictive optimal control of reactive power and 

wind power fl uctuations for real-time control center opera-

tions—are discussed in this article. 

Short-Term Wind Power Prediction
Short- to medium-term wind power forecasting using 

numerical weather forecasts and computational intelligence 

methods has experienced enormous progress in recent 

years and represents an integral part of today’s energy sup-

ply. For asserting predictive control of wind farms, wind 

farm groups, and the associated transformer, the short-

term prediction of active and reactive wind turbine power 

outputs is essential. Contrary to other fi elds of applica-

tion of the prediction models for the energy market, wind 

farm control requires a very short forecast horizon, from a 

few seconds up to 15 min. The approaches used with the 

existing model, therefore, do not apply here. Weather pat-

tern information will play no role in this task. Rather, it 

is important to estimate the electrical parameters for the 

near future based on recordings and analyses of the current 

situation of wind farms. Compiling this estimation using 

analytical approaches is very diffi cult and imposes a high 

computational cost; for these reasons, the use of computa-

tional intelligence methods is essential. In several studies 

on wind power prediction, the ability of neural networks to 

carry out short-term predictions from spatiotemporal infor-

mation is well known.

In contrast to the previously used methods for very short-

range forecasting, the proposed method uses no related 

numerical weather prediction (NWP) information. The active 

and reactive power are predicted solely based on power data 

measured from representative wind farms or wind turbines 

in a wind farm. Due to the spatial distribution of these wind 

farms, changes in grid areas are identifi ed, and this informa-

tion helps to predict the supply in the near future. The suit-

ability of this spatial method for predicting wind power over 

very short forecast horizons is being investigated in detail. 

In Figure 1, the predicted outputs are active and reactive 
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figure 1. Neural network inputs are the active and reactive power of the individual N wind turbines in a wind farm at the 
current time, t, and the outputs are predicted active power and reactive power of a wind farm at time t + 3t.

Short-term wind power prediction on the order of seconds, minutes, 
and a few hours and its application in control centers becomes 
critical for the real-time operation of the electricity supply system. 



power of a wind farm at the next 

time interval. 

The short-term active wind 

power forecast for one of the Ger-

man network regions (TenneT), 

based on the measured power data 

of selected wind farms, is shown 

in Figure 2. The input data for the 

neural network consist of the nor-

malized output signals representa-

tive of individual turbines or wind 

farms. 

The fi gure shows the curves of 

the wind energy fed into a network 

region of TenneT compared with the 

one-hour forecast and the one-hour 

persistence. The neural network 

model using the spatial method is 

clearly predicting large fluctua-

tions signifi cantly better than the 

approximated persistence method. The root mean square error 

(RMSE) for the one-year period was 2.5% of the installed 

plant capacity, and the correlation coeffi cient was 0.989. 

Table 1 compares the forecast accuracy of the spatial method 

for prediction horizons from one to three hours. For the one-

hour forecast, the spatial method provides a signifi cantly bet-

ter result than NWP-based models. In contrast, larger predic-

tion horizons suffer from reduced quality compared with the 

NWP-based models. With these benchmarks, the neural net-

work method based on spatial power data represents a very 

good solution for very short-term predictions for grid regions 

and wind farms.

Predictive Wind Farm 
Reactive Power Control
With the increasing integration of WPPs, grid utilities 

require extended reactive power supply capabilities, not 

only during voltage dips but also during steady-state 

operation. According to the grid codes, the reactive 

power requirements are defi ned alternatively in terms of 

the power factor, the amount of reactive power supplied, 

or the voltage at the point of interconnection. To achieve 

the reactive power requirement optimally, WPP opera-

tors may consider performing reactive power optimiza-

tion within their own facilities. The stochastic nature of 

the wind speed, however, poses a serious problem to the 

reactive power management of WPPs. To consider uncer-

tainties caused by the wind, the optimization must be per-

formed in a predictive manner for a certain future time 

horizon by taking into account the short-term wind fore-

cast. This idea is depicted in Figure 3. In this approach, 

optimization of power fl ows is performed for a given sce-

nario, which includes a set of future operating points. All 

of these operating points are optimized simultaneously 

using the objective function, which can be formulated 

several different ways. The simplest technique is to mini-

mize power losses within the wind farm area. Taking into 

account the stepwise movement of on-load tap changers 

(OLTCs), the power losses and costs of OLTC movements 

can be considered monetarily. 

The quality of the optimal wind farm operation depends 

on the accuracy of the wind power forecast. In the example 

presented herein, the forecast results shown in Figure 4 have 

been used. 
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table 1. Accuracy (RMSE and correlation) 
of the spatial method.

 Spatial Method
Prediction Horizon (hour) RMSE Correlation
1 2.5% 0.989
2 4.2% 0.970
3 5.7% 0.953
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figure 2. Measured and predicted curve of active power of wind farms in a grid 
area of TenneT.

A high degree of wind power integration without intelligent 
control may result in power system stability issues and penalties 
that cause wind farm owners to lose revenue.



The optimization is carried out over the predicted time 

period for n discrete time steps simultaneously. Then, the 

optimal power fl ow program suggests the optimal OLTC tap 

settings along with the optimal reactive power references for 

the entire wind farm for the next n time steps. By conducting 

this optimization every fi ve minutes, it can be updated if new, 

improved forecast results become available. The proposed 

predictive control optimization was tested with a real wind 

farm model, as depicted in Figure 3. The results are shown in 

Figures 5 and 6. 

For simplicity, in this case study, all wind turbines receive 

the same optimized reactive power reference set point. Different 

optimization methods can be used for the described problem, 

but the optimization task in general is nonlinear and  nonconvex. 
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figure 4. Results of the wind power forecast using a neu-
ral network.
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The authors therefore used the heuristic optimization algorithm 

called mean-variance optimization (MVO), also referred to 

later as the mean-variance mapping optimization (MVMO), 

which demonstrates excellent convergence properties. 

Large wind farms connected to high-voltage transmission 

grids must either deliver a certain amount of reactive power or 

control the voltage at the point of interconnection. Often, the 

reactive power demand is derived from the voltage according 

to a given characteristic. Alternative methods may exist, but 

the basic task always remains the same and can be described 

by the reactive power demand that the wind farm has to sup-

ply. To adapt the reactive power generation, usually a wind 

farm controller is implemented. The output of this controller 

is the reactive power reference to individual wind turbines or, 

alternatively, the local voltage reference if a voltage controller 

is implemented at the wind turbine level. The question that 

arises is how the suggested wind farm optimization can be 

incorporated into the common wind farm optimization loops. 

Figure 7 illustrates the approach used. 

The optimization directly controls the OLTC positions 

and the shunt reactor connected to the bus bar to compen-

sate for the capacitive charging power of the cable. The shunt 

reactor represents a discrete optimization variable, as it can 

only be switched on or off. The reactive power reference of 

the wind farm is usually distributed to the operating wind 

turbines equally, meaning that the output of the propor-

tional-integral controller, 3Qtotal, is divided by the number 

of wind turbines. This value may now be modifi ed by distri-

bution factors calculated based on the optimization results. 

The distribution factors are usually close to unity. Deviating 

from 1.0 will result in different var references remotely com-

municated to the wind turbines. The distribution factors are 

calculated in such a way that even if they are not uniform, 

the total required power 3Qtotal will be supplied.

The suggested control and optimization methods have 

been tested by simulating their behavior over 24 hours. The 
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optimization is carried out every 15 min, resulting in modi-

fi ed distribution factors. For the simulation, it is assumed 

that the wind is fl uctuating and that the reactive power 

demand is changed by the operator in a stepwise manner 

in the range of maximum capacitive to maximum induc-

tive values. Wind farm losses are shown for three different 

cases in Figure 8. Cases 1 and 2 represent operation with 

optimization. In Case 1, the var references of the wind 

turbines are different, whereas in Case 2, all of the wind 

turbines have the same (but optimized) var references. 

Case 3 represents the state of the art as implemented in most 

of the wind farms without any optimization but with a wind 

farm controller in operation and classical voltage controllers 

applied to the OLTC. Clearly, the wind farm losses can be 

reduced considerably with optimization. On the right-hand 

side of the plots in Figure 8, Case 3 shows slightly smaller 

losses. In this case, however, the voltage limitations in the 

grid are violated (not shown here). Cases 1 and 2 show simi-

lar results. This is due to the fact that the wind turbines in this 

particular wind farm are close to each other (500–600 m), 

so different supplied var references will not result in consid-

erable differences in the loss. Therefore, in this case, a uni-

form var generation distribution is acceptable. Optimization 

is required, however, for optimal control of the OLTC and 

the shunt reactor. 

Predictive Optimal Control 
of Wind Power Fluctuations
The dynamic and intermittent nature of wind power causes 

fl uctuations in transmission line fl ows that may result in power 

system instability. Power system instability can lead to cas-

caded outages and, eventually, a blackout. Integrating bat-

tery energy storage systems (BESSs) reduces the uncertainty 

inherent in wind power generation and increases grid reliabil-

ity and security. In other words, it minimizes the possibility 

of a blackout. Wind power varies continuously, however, and 

in order to effectively and continuously utilize limited energy 

storage to mitigate the power fl uctuations, it is necessary to 
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controller. The wind power balancing controller uses the predicted power output of the wind farm to command charging 
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carry out a real-time optimal control of the state of charge 

(SOC) of the battery energy storage system with variations in 

wind speed over a moving time window. Based on the short-

term predictions of wind power over any given time window, 

the optimal charge and discharge power commands for the 

BESS are determined. In other words, without optimal con-

trol, the BESSs will lose their function as shock absorbers 

once their SOCs charge to their maximum limit or discharge 

to their minimum limit.

Adaptive critic design (ACD) is a powerful computa-

tional approach that can determine optimal control laws for a 

dynamic system in a noisy, nonlinear, and uncertain environ-

ment, such as the power system. Compared with classical con-

trol and dynamic programming–based approaches, ACD is a 

computationally inexpensive method for solving infi nite-hori-

zon optimal control problems. With ACDs, no prior informa-

tion is needed about the continuously changing system to be 

controlled, and optimal control laws can be determined based 

on real-time measurements. The ACD consists of two subsys-

tems, an actor and a critic. The actor receives the states of the 

system (wind speed, power fl ows, and so on) and dispenses 

the control/decision signals (BESS charge and discharge com-

mands). The critic learns the desired performance index for 

some function associated with that index and evaluates the 

overall performance of the system, 

like a supervisor. The power sys-

tem in Figure 9 is used to illustrate 

the need for intelligent optimal 

control of a BESS to provide maxi-

mum mitigation of transmission 

line power fl ows with wind farms. 

Figure 9 shows a modifi ed 12-bus, 

multimachine power system with 

three generators (G2, G3, and G4), 

an infi nite bus (G1), and three inter-

connected areas. Generator G4 is a 

wind farm. The BESS is connected 

to bus 13 in area 2 of the system. 

The BESS charges and discharges 

energy in order to reduce power 

fl uctuations in the two transmis-

sion lines (lines 6-4 and 1-6) con-

nected to the wind farm bus. The 

task of the BESS is to maintain 

steady-state power fl ows in lines 

6-4 and 1-6 as much as possible 

with wind power variations.

In order to implement this 

objective, a dynamic optimal SOC 

controller with the ability to fore-

cast wind power variations was de -

veloped. The actor (see Fig ure 10) 

is an MVO algorithm, which 

generates charge and discharge 

power commands (P*comm(t)) based 

on the system states and feedback from the critic neural net-

work regarding the actor’s performance. The system states 

are measurements from the power system, which consists of 

the following four elements: the current SOC of the BESS 

(SOC(t)), the varying wind power (Pwind(t)), and the active 

power fl ows through the transmission lines 1-6 (P1-6(t)) and 

6-4 (P6-4(t)) connected to the wind farm.

The critic network is a neural network whose output is 

an approximation of the cost-to-go function of Bellman’s 

equation of dynamic programming. The utility function in 

the approximation of the cost-to-go function is composed of 

the sum of three terms with different weightings. The fi rst 

two terms are the transmission line active power fl uctuations 

in lines 1-6 and 6-4. The third term represents the anticipated 

deviation in the BESS’s SOC from its maximum and mini-

mum SOC limits, which are estimated based on the predicted 

wind power output over the next several seconds. If the SOC 
of the BESS falls below the predefi ned minimum, the BESS 

will not be able to compensate for any defi cit in wind power. 

Similarly, if the SOC exceeds the predefi ned maximum, it 

will not be able to absorb any excess wind power. Therefore, 

it is necessary to maintain the SOC of the BESS within its 

chosen dynamic range at all times. The actor based on the 

MVO algorithm determines the optimal charge or  discharge 

Modified 12-Bus Power System with a Wind Farm and
Battery Energy Storage System
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command P*comm(t). The MVO algorithm is a new, popu-

lation-based stochastic optimization technique. The MVO 

algorithm fi nds the near-optimal solution and is simple to 

implement. The anticipated SOC deviation of the BESS is 

obtained using its ampere-hour rating and the forecast wind 

power over the next several seconds or minutes. 

The active power fl ow fl uctuations in transmission lines 

1-6 and 6-4 caused by the variations in wind power over a 

few minutes and shown in Figure 11(a) are plotted in Fig-

ure 11(b) and 11(c), respectively. Without an ACD control-

ler, signifi cant power fl uctuations occur in the lines, which 

may result in stability issues and penalties that cause the 

wind farm to lose revenue. The ACD controller reduces the 

fl uctuations in the transmission lines from the reference 

line power fl ow values and, hence, minimizes the deviation 

penalty charged to the wind power provider. The results pre-

sented here use fi ve steps of prediction, a total of 25 s, where 

each step is fi ve seconds ahead.

Conclusions
Short-term wind power prediction on the order of seconds, 

minutes, and a few hours and its application in control centers 

becomes critical for the real-time operation of the electricity 

supply system as more and more wind power penetrates into it. 

The value of short-term wind power forecasting is high consid-

ering the reduction in power losses it offers, as is maximizing 

the security and stability of the power system, especially when 

stochastic security-constrained optimal power fl ow is far from 

reaching control centers in the near future. Even more attrac-

tive to wind power providers is that short-term wind power 

forecast–based system applications in control centers can 

result in the maximization of revenue by minimizing penalties.
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