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Abstract— In all-electric navy ships, severe damages or faults
may occur during battle conditions. This might even affect the
generators, and, as a result, critical loads might suffer from
power deficiencies for a long time, ultimately leading to a
complete system collapse. A fast reconfiguration of the power
path is therefore necessary in order to serve the critical loads and
to maintain a proper power balance in the ship’s power system. A
fast, intelligent reconfiguration algorithm based on Small
Population-based Particle Swarm Optimization (SPPSO) is
presented in this paper. The reconfiguration of the electric ship’s
power system is formulated as a single objective as well as a
multi-objective optimization problem. In the case of multi-
objective optimization, the Pareto optimal solutions are obtained
by SPPSO from two conflicting objective functions. From the
Pareto set, the final solution is chosen depending on users’
preferences regarding the mission of the navy ship. SPPSO is a
variant of PSO having fewer numbers of particles and
regenerating new solutions within the search space every few
iterations. This concept of regeneration in SPPSO makes the
algorithm fast and greatly enhances its capability. The strength of
the proposed reconfiguration strategy is demonstrated on a Real-
Time Digital Simulator (RTDS) environment.

Index Terms— Dynamic reconfiguration, Electric ship, power
system, Small Population-based Particle Swarm Optimization.

I. INTRODUCTION

econfiguring distribution power networks is a well-known
research area in power systems. Conventionally, it is

viewed as a multi-objective optimization problem [1].
Heuristic search algorithms are the classical approach used to
solve this distribution system reconfiguration problem [2]-[3].
Due to the stochastic nature of the problem, computational
intelligence algorithms, such as genetic algorithms, particle
swarm optimization, differential evolution, ant colony
optimization, and a hybrid of an artificial immune system and
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ant colony optimization have been used by different
researchers in [1] and [4]-[9], respectively. Generally, a
common objective for the reconfiguration problem is to
minimize the distribution system’s losses. In some cases, as in
[6], however, load balancing has been considered the primary
objective. Along with loss minimization, some authors have
considered additional objectives, such as minimizing voltage
deviation and balancing transformer loads [1]. Numerous
techniques have been adopted to solve the problem. In [2], a
fast and simplified power flow program has been developed to
determine the optimal flow pattern, which drives the heuristic
algorithm. In [3], a heuristic algorithm has been proposed
which starts with a meshed network with all switches in a
closed state. Then, the switches are opened one by one, and the
minimum loss configuration is calculated by running the load
flow program for each configuration. A similar approach is
considered in [4], where distributed generation has also been
included into the problem’s formulation. The only difference is
that, instead of an exhaustive search, a genetic algorithm is
used where each gene represents an open switch on the loops.
In [5], along with a genetic algorithm, a fuzzy decision model
has been added. The basic solution strategy remains the same.
In [6], a load balancing index (LBI) has been minimized based
on a binary particle swarm optimization algorithm. In [7], loss
minimization is carried out on the subject to bus voltage and
line current constraints with the help of the variable scaling
hybrid differential evolution approach. Variable scaling helps
to overcome the drawbacks of fixed and random scaling and
solves the problem of mutation operator selection in hybrid
differential evolution. In [8] and [9], the loss minimization
objective is achieved by applying ant colony optimization in a
hypercube framework.

However, a few basic differences exist between a normal
distribution system and a naval shipboard’s power system. The
network loss in an electric ship is very small compared to that
of a terrestrial distribution system; therefore, loss minimization
is not an objective for reconfiguring an electric ship’s power
system. In navy ships, there are several emergency loads that
must be served during battle conditions. Also, the ship’s power
system should reconfigure quickly so that the quality of power
to those critical loads is maintained at the desired level at all
times. Another consideration is that, in navy ships, there are
concepts of ‘missions;’ the priorities of the loads vary
according to the nature of the mission [10]. These
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particularities of a ship’s power system necessitate a simple,
fast and intelligent reconfiguration strategy that can be
implemented easily in real-time to produce the desired result.
Dynamic reconfiguration of the ship’s power system is an
ongoing research area. In [11], a fast reconfiguration algorithm
is proposed on a zone-based differential protection system.
This algorithm has two consecutive search functions, a path
search algorithm and a load shedding scheme based on load
priorities for the path having a negative power balance.
However, the authors do not present any real-time studies,
making it difficult to predict how much time the algorithm will
take to change the status of the breakers in a real system. This
work is further developed in [12] and [13] by applying binary
PSO and a genetic algorithm, respectively, for the load
shedding scheme proposed in [11]. Generally, both PSO and
GA work with a number of candidate solutions
(‘chromosomes’ in GA and ‘particles’ in PSO). An increase in
the number of potential solutions betters the exploration but
eventually makes the algorithm slow and unfit for real-time
applications. In addition to PSO and GA, agent-based
reconfiguration strategies have been proposed in [14] and [15].

A new, simpler approach to reconfiguration which is fast
enough to implement in real time without serious deterioration
in voltage stability is presented in this paper. To enhance the
algorithm’s execution speed, the problem is first formulated as
a single objective optimization problem, and the unique
solution is obtained directly with Small Population-based
Particle Swarm Optimization (SPPSO). However, this kind of
formulation sometimes fails to address the few cases in which
two conflicting objectives arise in practical situations. In those
cases, it becomes necessary to formulate the problem as a
multi-objective optimization problem. In a multi-objective
framework, a set of Pareto optimal solutions are first extracted
by SPPSO from two conflicting objectives. Those Pareto
optimal solutions present a set of permissible operating modes.
After that, those solutions are passed through a set of questions
representing user preferences corresponding to mission-
specific requirements. Based on the response to those
questions, the final solution is obtained. The concept of
including user preferences in solving multi-objective
optimization problems was introduced by Tanaka et. al. [16].
Their study utilized an offline process involving human
interaction. However, in a ship’s system, the speed of
reconfiguration is the most important factor, so there is no
scope for human participation. Hence, in this paper, the
concept of user preference is included inside the algorithm
itself in the form of a knowledge base.

The intelligent dynamic reconfiguration algorithm proposed
in this paper for both the single objective and multi-objective

formulations are first verified in Matlab and then implemented
in real-time based on a Real Time Digital Simulator (RTDS)
and a DSP.

The remainder of the paper is organized as follows: Section
II discusses the detail of the proposed algorithm. The
formulation of the problem as a multi-objective optimization
problem and the concept of Pareto Optimality are presented in
Section III. Section IV describes the principle of Small
Population-Based Particle Swarm Optimization. Section V
presents the test system and the results. Finally, the conclusion
and future work are summarized in Section VI.

II. INTELLIGENT RECONFIGURATION ALGORITHM

The ship’s power system consists of two main generators of
36 MW (MTG1 and MTG2), two auxiliary generators of 4
MW (ATG1 and ATG2) and several critical and non-critical
loads. In the typical structure shown in Fig. 1, the loads are
represented as lumped loads at eight buses of the network.
This representation has 20 circuit breakers, among which four
are generator breakers, eight are load breakers and the
remaining eight are path breakers. The status of the breakers
can be either ‘CLOSED’ or ‘OPEN,’ hence; theoretically, 220

breaker position possibilities exist. The breaker positions must
also satisfy the condition

GEN LOADP P 

where PGEN is the available generation at a particular time
and PLOAD , referred to as ‘available load’ in the remainder of
the paper, is the amount of load to be powered at that point of
time. When a fault occurs at a bus, the protection system
senses the fault and trips the breakers associated with the fault
to isolate it. The available breaker status is thus modified with
the fault. The available generation and load profile of the
system also change simultaneously. Based on these changes,
the reconfiguration strategy now searches for a new topology
of the ship’s power system so that it can supply the maximum
number of critical loads with optimal generation. The
objective functions for this problem can be formulated as
follows:
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Fig. 1. Structure of ship’s power system having eight buses (Bus1 to Bus8), four generators (MTG1, MTG2, ATG1 and ATG2), twenty breakers (B1 to B20),
and eight loads (L1 to L8)

where pi is the priority weighting associated with a load Li for
a particular mission and N is the total number of loads. A
lower priority weighting signifies a lower priority. This type of
formulation assumes that no conflicting objective exists;
hence, the question of Pareto optimality does not arise. This is
the simplest representation of the objective function and can
successfully represent many common realistic scenarios. The
proposed reconfiguration strategy consists of the following
steps:

Step 1: First, the configuration of the ship’s power system is
represented by a vector of 20 binary elements, where ‘1’
represents the ‘CLOSED’ and ‘0’ represents the ‘OPEN’ status
of the breakers, respectively. After obtaining the fault
information, it updates the vector accordingly.

Step 2: Now, three distinct vectors are produced from the
original one. One vector represents the generator breaker
status, another represents the load breaker status and the last
one represents the bus connection breaker status. This vector
production is carried out to reduce the complexity of the
search space for the reconfiguration algorithm.

Step 3: From the updated generator and load breaker
vectors, the total available generation and the total available
load are calculated.

Step 4: If PGEN ≥ PLOAD, all the load breakers (except those
tripped by the fault) are closed. If PGEN < PLOAD, all the
generator breakers are to be closed (except the faulted
generator(s), if any).

Step 5: Step 4 further reduces the search space complexity.
For PGEN ≥ PLOAD, the proposed strategy searches for the
optimum generation (guided by the objective function in (3))
within a very small search space of 2M options, where M = 4,
as shown in Fig. 1. Hence, no intelligent algorithm is needed

for this purpose. For PGEN < PLOAD, the proposed strategy
carries out an optimal load shedding using the objective
function in (2). The search space for this becomes 2N, where N
= 8, as in Fig. 1. However, real systems can have more loads,
and with the addition of one load, the search space doubles.
Therefore, in order to provide a generalized solution,
intelligent techniques capable of making fast decisions are
preferred. In this paper, this load reconfiguration is carried out
by an SPPSO algorithm [17] for maximizing (2).

III. MULTI-OBJECTIVE OPTIMIZATION AND PARETO

OPTIMALITY

When the objective function is represented as (2), the
priority of the loads and the magnitudes of the loads are not
considered separately. The implicit assumption behind (2) is
that, while maximizing the product of the priority weighting
and the magnitude of the loads, both are being maximized. In
practice, however, this may not be so simple. For example, if,
during load shedding, there is a very high priority load of 2
MW and a very low priority load of 20 MW, there are clearly
two conflicting choices. If the load priority is important, then
one will go for shedding the 20 MW load. However, this will
not be the preferred choice if the situation needs the
maximization of the total magnitude of the load to be served.
Considering this practical conflicting situation, the objective
represented by (2) can be split into two separate objectives as
follows:
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In order to resolve these types of multi-objective
optimization problems, one has to find out the Pareto optimal
front. The concept of Pareto optimality is as follows:

In a general multi-objective optimization problem, the
objectives are to be achieved simultaneously, and they are
formulated as [18]
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Where fi is the ith objective function, x is a decision vector
that represents a solution; and Nobj is the number of objectives.
M and K are the numbers of equality and inequality
constraints, respectively. Now, any two solutions x1 and x2 of a
multi-objective optimization problem can have one of two
possibilities: one dominates the other or none dominates the
other. Without losing generality, in a minimization problem, a
solution x1 dominates x2 if the following two conditions are
satisfied:

)()(:},...,2,1{ 21 xfxfNi iiobj  

)()(:},...,2,1{ 21 xfxfNj jjobj  

If any element of the above condition is violated, x1 does not
dominate x2. If x1 dominates x2, x1 is called the non-dominated
solution. A set of all non-dominated solutions inside the search
space is called the Pareto optimal set or the Pareto optimal
front.

There are several methods to extract the Pareto optimal
front in a multi-objective optimization problem [19]-[21], but
in most of the techniques, the process of finding a non-
dominated solution is a computationally complex and time
consuming process. The easiest method for a two-objective
problem is to represent the weighted sum of two objectives as
follows [22]:

)()()( 2211 xfwxfwxf  

where,

 121 ww 

In this way, the two objectives are expressed as a single
objective that can be optimized with any conventional or

evolutionary methods. If w1 now varies from 0 to 1 in small
steps and the optimum value of f(x) is calculated for each value
of w1, that provides the entire set of Pareto optimal solutions.

In the case of a multi-objective framework, this Pareto
optimal front extraction is carried out by an SPPSO algorithm.
All the steps discussed in Section II remain the same except
for a difference in Step 5. Previously, in the single objective
formulation, the final solution was obtained by SPPSO in Step
5. In a multi-objective framework, instead of a unique solution,
the entire set of Pareto optimal solutions are obtained by
SPPSO. Therefore, in order to calculate the final solution,
another step (Step 6) is added to the reconfiguration strategy.

Step 6: The problem discussed in this paper is a discrete
optimization problem. Hence, the Pareto front is actually a set
of discrete solutions that indicates the permissible operating
modes of the ship’s power system. Those solutions are passed
through a set of predefined questions representing user
preferences regarding the mission. Based on the responses to
those questions, the final solution is selected. For example, in a
battle mission, users may need a high value of priority loads
(such as weapon loads, radar loads, etc.) and a critical
minimum value of the total amount of load to be served. The
Pareto solution satisfying this condition is now selected.
Conversely, in a cruising mission, users may need a critical
minimum value of priority loads (such as radar load only) and
a high value of the total load to be served. Again, the Pareto
solution satisfying this preference is selected as the final
solution.

IV. SMALL POPULATION-BASED PSO

A. Conventional Particle Swarm Optimization Algorithm

Particle swarm optimization is a population-based search
algorithm that aims to replicate the motion of flocks of birds
and schools of fish [23]. A swarm is considered to be a
collection of particles, where each particle represents a
potential solution to the problem. The particle changes its
position within the swarm based on the experience and
knowledge of its neighbors. Basically, it ‘flies’ over the search
space to find the optimal solution [24]-[25].

Initially, a population of random solutions is considered. A
random velocity is also assigned at which each individual
particle begins flying within the search space. Also, each
particle has a memory that keeps track of the previous best
position of the particle and the corresponding fitness. This
previous best value is called ‘pbest.’ Another value called ‘gbest’
is the best value of all the ‘pbest’ values of the particles in the
swarm. The fundamental concept of the PSO technique is that
the particles always accelerate towards their ‘pbest’ and ‘gbest’
positions at each time step. Fig. 2 demonstrates the concept of
PSO, where,

a) xid(k) is the current position of the ith particle with d
dimensions at instant k.
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b) xid(k+1) is the position of the ith particle with d
dimensions at instant (k+1).

c) vid(k) is the initial velocity of the ith particle with d
dimensions at instant k.

d) vid(k+1) is the initial velocity of the ith particle with d
dimensions at instant (k+1).

e) w is the inertia weight, which stands for the tendency of
the particle to maintain its previous position.

f) c1 is the cognitive acceleration constant, which stands
for the particle’s tendency to move towards its ‘pbest’
position.

g) c2 is the social acceleration constant, which represents
the tendency of the particle to move towards the ‘gbest’
position.

Fig. 2. Concept of changing a particle’s position in two dimensions

The velocity and the position of the particle are updated
according to the following equations. The velocity of the ith

particle of d dimension is given by:

1 1 _

2 2 _

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

id id best id id

best id id

v k w v k c rand p k x k

c rand g k x k

      

   


The position vector of the ith particle of d dimension is
updated as follows:

( 1) ( ) ( 1)
id id id

x k x k v k   


B. Small Population-Based PSO

As the number of particles in the swarm increases, the
convergence to a global solution is more and more ensured
because the higher the number of particles, the greater the
exploration of the search space. However, as the number of
particles increases, the memory requirement for the algorithm
also increases, which often is not permissible in real-world
applications of the algorithm with digital signal processors or
microcontrollers. Also, the speed of convergence decreases
significantly. In order to overcome these problems, an SPPSO
algorithm was developed by Das and Venayagamoorthy in
[22]. SPPSO starts with a small number of particles (generally
around five), and, after a few iterations, replaces all the
particles except for the global best with the same number of
regenerated particles. In this method, because the PSO runs
with a very small number of particles, the memory requirement

decreases significantly. Also, because a new set of particles are
introduced every few iterations, the chance of fixation to a
local minima decreases and convergence is achieved much
faster than in conventional PSO.

V. TEST SYSTEM AND RESULTS

The performance of the proposed reconfiguration strategy is
demonstrated on two research environments, Matlab and
RTDS. In both cases, the test system is similar to that
represented by the single line diagram in Fig. 1.

The results are broadly divided into two sections. The
results with the single objective formulation are presented in
Section A, and the results with the multi-objective formulation
are presented in Section B. Within each section, the Matlab-
based results are presented first, followed by the results
achieved using real-time implementation.

A. Single Objective Formulation:

1) Matlab-Based Case Study:
For the test system presented in Fig. 1, a typical mission

scenario (combination of load magnitudes and load priorities)
is considered. This scenario is referred to as Case 1 (cruising)
and is presented in Table I. For this case, a fault is created
arbitrarily at a particular bus. The breaker status changes
accordingly. The post-fault breaker status is then sent to the
reconfiguration algorithm. The reconfiguration algorithm
updates the breaker status vector. For the sake of convenience,
it is assumed that all the breakers were in the ‘CLOSED’ state
before the creation of the fault. Table II corresponds to the
fault scenario and output from the reconfiguration algorithm
for Case 1.

In the case of a fault at Bus 1 (fault scenario 1), breakers
B1, B2, B19 and B20 (Fig. 1) are tripped. As a result, the
generator MTG1 of 36 MW and load L8 of 2 MW are
disconnected. Now, the total available generation is 44 MW,
and the total available load is 66 MW. This requires shedding
of at least 22 MW of load. For the sake of simplicity,
generation reserve is not considered. Looking at the load
priority weightings in Table I, it is clear that L3 and L5 have
the least priority among the loads. However, if both of them
are shed, the load priority is maximized, but not the total
amount of load. As discussed earlier, in the single objective
formulation, the product of priority weighting and the
magnitude of the load should be maximized according to the
cost function in (2) and not the priority alone. Therefore, along
with L5, if either L2 or L6 is shed, the objective function in (2)
is maximized. This was verified through an exhaustive search
algorithm. The reconfiguration algorithm also correctly
recommends these two possible solutions, as shown in Table
II. In Table II, the generator and load breaker vectors are
presented as binary strings. The elements from left to right of a
generator breaker vector represent the status of G1, G2, G3
and G4 (Fig. 1), respectively. For example, a generator breaker
vector 0111 means generator G1 is out of service, while G2,
G3 and G4 remain connected. Similarly, for a load breaker
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vector, the elements from left to right represent the status of L1
to L8, consecutively. For example, a vector [10110110] means
L2, L5 and L8 are disconnected and L1, L3, L4, L6 and L7 are
connected.

To obtain better insight regarding the performance of the
algorithm, a parameter sensitivity study of the algorithm based
on a statistical analysis for fault scenario 1 is carried out. The
performance of the SPPSO algorithm depends mostly on two
parameters: a) number of particles in the swarm and b) number
of iterations after which regeneration occurs. In Table III, the
mean and standard deviation of the best fitness and the mean
execution time of the algorithm over 50 trials are presented for
a varying number of the two parameters mentioned above. The
studies are carried out with an Intel ® Core ™ i7 1.73 GHz
CPU and 3.05 GB of RAM. A standard deviation of zero is
achieved only if the number of particles is greater than or
equal to 4 and the number of iterations before regeneration is
at least 7. If any of those two parameter values increases, the
total number of fitness evaluations will also increase, and the
time of execution of the algorithm will increase accordingly,
which is not affordable in this type of application. Therefore,
the minimum values of those two parameters (4 and 7,
respectively) which produce a zero standard deviation are
selected for the entire study. The average computation time
over 50 trials for this case was 15.6 ms. The variation of the
inverse of the cost function (in (2)) with a number of fitness
evaluations for a random trial run is shown in Fig. 3.
Increasing the size of the power system leads to an expected
increase in the number of fitness evaluations required to attain
a zero standard deviation, and the time of execution of the
algorithm is expected to increase. However, there is no doubt
that this algorithm will remain fast enough to find the global
solution within a tolerable limit.

In fault scenario 2, a fault at Bus 2 is applied, but no
generator is associated with the bus. For this fault, only load
L1 of 20 MW is tripped. Since the total available generation is
80 MW and the total available load is only 48 MW, the
reconfiguration algorithm recommends the tripping of both
auxiliary generators (ATG1 and ATG2), each having a
capacity of 4 MW, since the remaining generators are
sufficient to serve the total available load.

TABLE I
LOAD MAGNITUDE AND PRIORITIES FOR CASE 1 (CRUISING)

Load No. L1 L2 L3 L4 L5 L6 L7 L8

Magnitude
(MW)

20 2 10 2 20 2 10 2

Priority
Weighting

4 4 1 6 1 4 2 6
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Fig. 3. Inverse of cost function vs. iteration curve for Case 1

2) RTDS-Based Case Study:
The model of an electric ship’s power system shown in Fig.

1 is built on the RTDS environment. The advantage of the
RTDS is that it can represent the dynamics of a power system
almost as closely as that of a practical system. The real-time
experimental setup is shown in Fig. 4. The breaker status
signals from the RTDS are sent to the DSP. Using these
signals, the reconfiguration algorithm implemented on the DSP
recommends a new breaker status, if necessary.

RTDS

DSP-RTDS Interface

Remote Workstation
(Draft and Runtime File)

Download

M67 DSP Card

Host PC

RTDS

Remote Workstation
(Draft and Runtime File)

Download

M67 DSP Card
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Fig. 4. Laboratory experimental setup



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

TABLE-II
THE OUTPUT OF RECONFIGURATION ALGORITHM FOR CASE 1 (CRUISING)

Faulted
Bus

Total
Available

Generation
(MW)

Total
Available

Load
(MW)

Possible
Generator
Breaker
Vector

Possible
Load

Breaker
Vector

Suggestion
For

Load-
shedding

Average
Computation

Time
(ms)

1 44 66 [0111]
[10110110]

or
[11110010]

L2, L5
or L5, L6

15.6

2 80 48 [1010] [01111111] None 4.2

TABLE-III
STATISTICAL ANALYSIS OF SPPSO ALGORITHM FOR CASE 1 (CRUISING)

(FAULT SCENARIO 1)

No. of
particles

No. of
iteration

before every
regeneration

Total no.
of fitness

evaluation

Mean
best

fitness
over 50
trials

Standard
deviation

of best
fitness
over 50
trials

Mean
time of

execution
of the

algorithm
(ms)

4 72 128.21 1.97e-4 7.7
5 90 128.21 1.2e-4 7.8
6 108 129.9 1.17e-4 9.8

3

7 126 129.9 1.17e-4 11.7

4 96 128.2 9.56e-5 9.8

5 120 129.9 6.25e-5 11.7
6 144 129.9 2.19e-5 12.8

4

7 168 130.0 0 15.6
4 120 129.9 1.63e-5 11.7
5 150 129.9 1.18e-5 13.7
6 180 129.9 1.17e-5 17.6

5

7 210 130.0 0 19.5
4 144 129.9 1.24e-5 13.7
5 180 129.9 4.46e-7 15.6
6 216 129.9 2.2e-7 19.5

6

7 252 129.9 0 21.5

The same load magnitude and priorities given in Table I are
used. The same fault at Bus 1 is now applied from the RSCAD
(an RTDS module) runtime window. The same results as
observed in the Matlab study are obtained. Since the algorithm
was calculated very quickly, the system had to remain
overloaded for a short period of time. Thus, there is no
significant deterioration in the active power and voltage profile
of the high priority loads. In order to demonstrate the impact
of reconfiguration on the loads, as well as on the entire system,
a high magnitude load L1 is selected. Before the occurrence of
a fault, L1 was consuming 19 MW of power at a voltage of
approximately 0.98 p.u. Post-fault, there was a transient in the
voltage consumed by L1, but it finally settled down to a steady
value of 1.0 p.u., which is very close to the pre-fault value. In
this particular experiment, constant impedance-type loads have
been considered, and no voltage control devices have been
used. Therefore, with the fault, the subsequent isolation of the
generator, and the reconfiguration of the loads, the entire
system now moves to a new operating point. The voltages at

each bus therefore change slightly. The dynamic voltage
variation at the L1 load bus is shown in Fig. 5. Due to this
change, the power consumed by the constant impedance loads
also changes slightly. The dynamic variation of active power
consumed by L1 is shown in Fig. 6. It is observed that the
power settles down to a steady state value of 19.95 MW. The
voltage and power characteristics are compared with the case
in which no reconfiguration is carried out. It is observed that
the system becomes unstable without load reconfiguration.
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Fig. 5. Post-fault bus voltage characteristics of load L1 at Bus 2
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Fig. 6. Post-fault active power characteristics of load L1 at Bus 2
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B. Multi-objective Formulation:

1) Matlab-Based Case Study:
A different set of magnitudes and priorities are considered

for the multi-objective framework. Those values are listed in
Table IV. A fault is created at Bus 1 as before. Thus, the
generator MTG1 of 36 MW and load L8 of 2 MW are tripped.
Now, the total available generation is 44 MW, and the total
available load is 54 MW. This definitely requires a load of at
least 10 MW to be shed. Here also, generation reserve is not
considered. From the load magnitude and the priority
weightings in Table IV, it can be calculated that there are 21
possible ways to shed a load of 10 MW or more. For example,
if the load L1 of 20 MW is shed, we can maximize the total
priority weighting because this load has the least priority. In
that case, the total load amount served by the system is much
less than the generation capacity. Similarly, if loads L2, L3, L4
and L6 are shed, the amount of load served by the system is
maximized. However, the loads L2 and L4 both have very high
priorities and must be sacrificed, which may not be desirable
in some special situations. In order to make decisions
concerning this conflicting scenario, Pareto optimal solutions
are obtained first using the SPPSO algorithm. Fig. 7 shows the
Pareto front for this scenario. The X-axis of Fig. 7 represents
equation (5), and the Y-axis represents equation (4). Since it
is a discrete optimization problem, the Pareto front also
consists of discrete points. Here, three discrete operating
points are obtained as the Pareto optimal solutions with
varying values of w1 and w2 according to (11). Though w1 and
w2 vary in increments of 0.1, only three non-dominant optimal
solutions are obtained by SPPSO. Now, those solutions are
passed through two questions representing user preferences
regarding the mission. In a generalized form, the questions
used in this paper are:

Q1. Is the critical amount of load powered?
Q2. Is the critical load priority criteria met?

The critical minimum values of the load priority and the
load magnitude mean that at least that amount of load has to be
served by the electric ship’s power system in that particular
mission mode. These two values corresponding to each
mission are part of the knowledge base. Those values generally

vary according to the type of mission, such as a battle mission,
functional mission, cruising mission, etc. The Pareto solutions
that satisfies those two conditions is chosen as the final
solution.

In this particular scenario, the battle mission is represented
by a critical value of priority equal to 35 and a minimum
amount of load to be powered equal to 30 MW. Therefore, the
reconfiguration algorithm chooses the first operating point on
the Pareto front in that mission mode. The load breaker
configuration found by the algorithm suggests the shedding of
L1, which is obvious from Table IV. Similarly, the knowledge
base corresponding to the other missions and the suggestions
for load shedding given by the reconfiguration algorithm are
presented in Table V. Here also, each case is run 50 times with
the optimum SPSO parameters derived beforehand, and the
average computation time is given in Table V.
2) RTDS-Based Case Study:

The same load magnitudes and priorities given in Table IV
are used in the RTDS model. The fault at Bus 1 is now applied
from the RSCAD runtime window as before. Here, to
represent the functional mission, the critical priority weighting
was set at 20, and the critical load to be powered was set at 40
MW (Table V). In order to demonstrate the impact of
reconfiguration, a load L1 is selected. Before the occurrence of
a fault, L1 was consuming 19.1 MW of power at a voltage of
0.983 p.u. Post-fault, there was a transient in the power
consumed and the voltage of L1, but both settle down to
respective steady values. The dynamic variation of voltage and
power at the L1 load bus is shown in Figs. 8 and 9,
respectively. Those are compared with the case in which no
reconfiguration is carried out. It is again observed that the
system destabilizes very slowly if the loads are not
reconfigured.

TABLE-IV
LOAD MAGNITUDE AND PRIORITIES FOR CASE 2 (MULTI-OBJECTIVE

SCENARIO)

Load No. L1 L2 L3 L4 L5 L6 L7 L8

Magnitude
(MW)

20 1 4 1 20 4 4 2

Priority
Weighting

1 10 5 10 3 5 5 6
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TABLE-V
OUTPUT OF THE RECONFIGURATION ALGORITHM FOR CASE 2 (MULTI-OBJECTIVE SCENARIO)

Faulted
Bus

Operating
Mode

Critical
Priority

Requirement

Critical Load
Requirement

(MW)

Total
Available

Generation
(MW)

Total
Available

Load
(MW)

Possible
Generator
Breaker
Vector

Possible
Load

Breaker
Vector

Suggestion
For

Load-shedding

Average
Computation
Time (sec.)

Battle 35 30 44 54 [0111]
[01111110]
(operating
point 1)

L1 1.96

Functional 20 40 44 54 [0111]
[11011000]
(operating
point 2)

L3,L6,L7 1.98

1

Cruising 6 44 44 54 [0111]

[10101000]
or

[10001010]
or

[10001100]
(operating
point 3)

L2,L4,L6,L7
or

L2,L3,L4,L6
or

L2,L3,L4,L7

2.02

30 32 34 36 38 40 42 44 46 48
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Fig. 7. Pareto optimal front for Case 2 (multi-objective scenario)
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Fig. 8. Post-fault bus voltage characteristics of load L1 at Bus 2 (multi-
objective scenario)
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Fig. 9. Post-fault active power characteristics of load L1 at Bus 2 (multi-
objective scenario)

VI. CONCLUSION

An intelligent dynamic reconfiguration strategy for an
electric ship’s power system has been presented in this paper.
The problem is formulated both as a single objective and
multi-objective optimization problem. Studies in Matlab and a
real-time environment are performed to illustrate the
capabilities of the proposed reconfiguration strategy.

Dynamic reconfiguration is carried out using the small
population-based particle swarm optimization. The presented
strategy is simple, fast and easy to implement for real-time
applications. The speed of this reconfiguration strategy is
enhanced using a few simple, logical steps that greatly reduce
the search space complexity. In the case of the multi-objective
framework, the Pareto optimal front is extracted from two
conflicting objectives, and the Pareto solutions are passed
through two questions representing user preferences regarding
the mission; thus, the final solution is selected.
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In the future, more complex cases must be studied, such as
the occurrence of multiple faults simultaneously on different
buses, which may result in two or more islanded systems. This
would require a path search algorithm to be included in the
reconfiguration strategy. Intelligent fault identification is
another aspect of future research that can be integrated with
the intelligent reconfiguration strategy.
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