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System identification is a challenging and complex optimization problem due to nonlinearity of the

systems and even more in a dynamic environment. Adaptive infinite impulse response (IIR) systems are

preferably used in modeling real world systems because of their reduced number of coefficients and

better performance over the finite impulse response filters. Particle swarm optimization (PSO) and its

other variants has been a subject of research for the past few decades for solving complex optimization

problems. In this paper, PSO with quantum infusion (PSO–QI) is used in identification of benchmark IIR

systems and a real world problem in power systems. PSO–QI’s performance is compared with PSO and

differential evolution PSO (DEPSO) algorithms. The results show that PSO–QI has better performance

over these algorithms in identifying dynamical systems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, least mean square (LMS) and other algorithms
have been studied for the identification of linear and static
systems (Widrow et al., 1976). But, almost all physical systems
are nonlinear to certain extent and recursive in nature and hence
it is more convincing to model such systems by using nonlinear
models (Panda et al., 2007; Krusienski and Jenkins, 2005). Thus,
nonlinear system identification has attracted attention in the field
of science and engineering. Hence these are better modeled as
infinite impulse response (IIR) models as they can provide better
performance than a finite impulse response (FIR) filter with the
same number of coefficients (Shynk, 1989a). Thus the problem of
nonlinear system identification can also be viewed as a problem
of adaptive IIR filtering. Also, IIR models are more efficient than
the FIR models for implementation as they require less parameter
and hence fewer computations for the same level of performance.
However, there are few problems associated with the use of IIR
models in identification of a system, such as instability of the
algorithms, slow convergence and convergence to the local
minimum (Netto et al., 1995). Different learning algorithms have
been used in the past for nonlinear system identification. These
techniques include use of neural network (Hongwei and Yanchun,
2005) and gradient based search techniques such as least mean
square algorithm (Shynk, 1989(a)). Unfortunately, the error
ll rights reserved.
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surface of such recursive systems such as a multi-machine power
system (Kundur, 1993) tends to be multi-modal and hence
traditional techniques of parameter approximation fail as they
get trapped into local minimum and cannot attain the global
minimum (Krusienski and Jenkins, 2005). Various algorithms that
are implemented in the adaptive IIR filtering for system
identification are described in (Netto et al., 1995).

Population based search algorithm such as genetic algorithm
(GA) has also been used for the system identification. It uses a
population of potential solutions encoded as chromosomes which
go through genetic operations such as crossover and mutation to
find the best solution (Kristinsson and Dumont, 1992). But its
effectiveness is affected by the convergence time (the time it
takes to find the global minimum). So to eliminate such
deficiencies, population based stochastic optimization techniques
have been discussed in various literatures. Particle swarm
optimization (PSO) is one of the most known techniques
(Kennedy and Eberhart, 1995). Application of PSO in the system
identification has been discussed in Panda et al. (2007). In Lee
et al. (2006), a method for the identification of nonlinear system
and parameter optimization of the obtained input–output model
has been described. The proposed method uses least squares
support vector machines regression based on PSO. In another
work, PSO has been used for optimizing the parameters of Elman
neural network which is used for speed identification of
ultrasonic motors (Hongwei and Yanchun, 2005). A modified
form of PSO called as the self-organizing particle swarm
optimization and its application in the system identification has
been discussed in Shen and Zeng (2007). Radial basis function
ticle swarm optimization with quantum infusion for system
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neural network (RBFNN) has been used for system identification
in Chen et al. (2007), where a hybrid gradient-based PSO
algorithm has been used to adjust the parameters of the RBFNN.
In Liu et al. (2006), particle swarm optimization and quantum-
behaved particle swarm optimization have been used for the
system identification. Use of different types of stochastic
optimization techniques in adaptive IIR filters and nonlinear
systems has been explained in Krusienski and Jenkins (2005). Use
of differential evolution (DE) and ant colony optimization (ACO)
in IIR filter design has been presented in Karaboga (2005) and
Karaboga et al. (2004), respectively. They also talk about the
possible use of these approaches in system identification and
other applications. But these algorithms have the tendency to get
stuck in the local minimum when the complexity of the problem
increases and in dynamic systems where time allowed for
convergence is constrained. Hybrid algorithms are used to
improve the performance by combining the best feature of
participating individual algorithms. Differential evolution PSO
(DEPSO) for digital filter design is discussed in Luitel and
Venayagamoorthy (2008a).

However, identification of systems without prior structural
information is still a challenge and new algorithms and
approaches are being studied. Also, identification of nonlinear
time varying systems is computationally intensive and many
traditional techniques fail. In this paper, PSO with quantum
infusion (PSO–QI) has been proposed to identify the pole zero
parameters of an IIR system and in the identification of generator
dynamics in a power system without prior structural information.
PSO–QI has better performance and is robust in the fact that its
convergence characteristics is less affected by the dimension of
the problem and has more consistent convergence than other
algorithms. Also, PSO–QI converges to a much lower value than
PSO or DEPSO. In the identification of generator dynamics, PSO–QI
performs the best, whereas PSO and DEPSO cannot approximate
the system transfer function every time as is seen from the
standard deviation over a number of trials. The major contribu-
tions of the paper are listed below:
�

P
id
Identification of benchmark IIR systems with full and reduced
order models using PSO–QI, which results in lower mean
squared error and more consistent convergence.
Fig. 1. Schematic for sy
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Application of PSO–QI in the identification of four generators
in a two-area multimachine power system using input–output
data without prior structural information.

�
 Comparison of three algorithms, PSO–QI, PSO and DEPSO, on

system identification problems. Based on lower values of mean
squared error and standard deviation, PSO–QI has shown to be
the best algorithm compared to the other two for identification
of IIR systems and generator dynamics in a multimachine
power system.

The rest of the paper is organized as follows: In Section 2,
an IIR system has been explained. The PSO–QI algorithm
is explained in Section 3. In Section 4, results of studies
carried out on some benchmark problems and a practical power
system problem are presented. The conclusions are presented in
Section 5.
2. An IIR system

System identification is the mathematical modeling of an
unknown system by monitoring its input–output data. This is
achieved by varying the parameters of the developed model so
that for a set of given inputs, its output match that of the system
under consideration. For a plant whose behavior is not known, an
adaptive system can be modeled and its parameters can be
continuously adjusted using any adaptive algorithms. By the use
of such adaptive algorithms, the required parameters can be
obtained such that the output of the plant and the model are same
for the same set of inputs, which is the goal of system
identification (Panda et al., 2007). Fig. 1 represents one such
identification model of any arbitrary system.

As said, most nonlinear systems are also recursive in nature.
Hence, models for real world systems are better represented as IIR
systems. By doing so, the problem of system identification now
becomes the problem of adaptive IIR filtering, for which different
adaptive algorithms can be applied for adjusting the feed forward
and feedback parameters of the recursive system. An IIR system
can be represented by the transfer function:

HðzÞ ¼
b0þb1z�1þb2z�2þ � � � þbmz�m

1þa1z�1þa2z�2þ � � � þanz�n
ð1Þ
identification.

e swarm optimization with quantum infusion for system
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where m and n are the number of numerator and denominator
coefficients of the transfer function and an and bm are the pole and
zero parameters of the IIR filter. This can be written as difference
equation of the form (Krusienski and Jenkins, 2005; Karaboga, 2005):

yðkÞ ¼
XL

n ¼ 1

anðkÞyðk�nÞþ
XM
n ¼ 0

bnðkÞxðk�nÞ ð2Þ

where x(k) and y(k) represent the kth input and output of the
system. Also, n=1, 2, 3,y, L and n=0, 1, 2,y, M represent the
Min. error o

Max. iteration

ST

Define:
Search space, population of
function
Initialize:
 Position, Velocity, pbest an

END

P

pbest
population

Yes

Find local attractor point 
J and mean best 
position mbest

Create offspring 
(gbest1) probabilistically

Is fitn
gbest >

Evaluate fitness of 
gbest1

Select a random 
particle

Fig. 2. Flowchart showing
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coefficients of the IIR filter. Considering the block diagram of
Fig. 1, the output y(k) for input x(k) to the system is mixed with a
noise signal n(k). The output of the plant added with the noise
gives the final system output d(k). On the other hand, the output
of the IIR filter in the modeled system for the same input x(k) has
an output of y0(n). The difference of the output from the actual
system with that of the modeled system gives the error e(k). This
error is used by the adaptive algorithm to adjust the parameters
of the IIR filter, and thus reduce the error in a number of iterations
so as to exactly identify the actual system. This has been shown in
btained?
or
s reached?

ART

 particles and fitness 

d gbest of particles

SO

gbest
particle

No

ess of 
gbest1 ? New gbest = gbest

New  gbest = gbest1

Yes

No

the PSO–QI algorithm.

ticle swarm optimization with quantum infusion for system
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the following equations:

dðkÞ ¼ yðkÞþnðkÞ ð3Þ

eðkÞ ¼ dðkÞ�y0ðkÞ ð4Þ

For the identification of the system, the adaptive algorithm
tries to minimize the error e(k) by adjusting the parameters of the
modeled system, which are the pole-zero coefficients in case of an
IIR system. The different kinds of algorithms that can be used for
error minimization in adaptive systems are explained in Netto
et al. (1995). In this paper, mean squared error (MSE) between the
output of the actual system and the designed system as given by
(5) has been considered as the feedback to the adaptive algorithm.

F ¼
1

N

XN

k ¼ 1

ðdðkÞ�y0ðkÞÞ2 ð5Þ

The fitness function used by the different algorithms that are
illustrated in the paper is given by

Fitness¼
1

1þF
ð6Þ

The numerator and denominator coefficients of the IIR filter
are represented by D dimensions (D=L+M). In Karaboga (2005),
DE has been used for adjusting the parameters of the IIR system to
reduce the MSE or to increase the fitness of the system. In this
paper, PSO, DEPSO and PSO–QI are being used. The mentioned
algorithms then find the best parameters in a number of iterations
by searching for the possible solutions in a D-dimensional search
space.
Fig. 3. Flowchart showing system identification using PSO–QI.
3. Particle swarm optimization with quantum infusion

Particle swarm optimization with quantum infusion is a new
approach to hybridization of PSO and QPSO. Here, the quantum
principle in QPSO is used to create a new offspring. After the
positions and velocities of the particles are updated using
standard PSO equations, a randomly chosen particle from PSO’s
pbest population is utilized to carry out the quantum operation
(Luitel and Venayagamoorthy, 2009); and thus, create an offspring
by mutating the gbest. The fitness of the offspring is evaluated and
the offspring replaces the gbest particle of PSO only if it has a
better fitness. This ensures that the fitness of the gbest particle is
equal to or better than its fitness in the previous iteration. Thus, it
is improved and pulled towards the best solution over iterations.
By infusing the quantum theory to the standard PSO, a new hybrid
algorithm is evolved which incorporates the best features of the
respective individual algorithms and thus a better fitness is
achieved. In PSO–QI, fast convergence property obtained by PSO
in the first few iterations, and the convergence to a lower average
error property obtained by QPSO, have been combined and hence
the performance is significantly improved, as is shown in the
results and Fig. 2. The flowchart for PSO–QI is illustrated in Fig. 2.
It is described below in detail.

PSO is an evolutionary-like algorithm developed by Eberhart
and Kennedy in 1995 (delValle et al., 2008). It is a population
based search algorithm and is inspired by the observation of
natural habits of bird flocking and fish schooling. In PSO, a swarm
of particles moves through a D dimensional search space. The
particles in the search process are the potential solutions, which
move around a defined search space with some velocity until the
error is minimized or the solution is reached, which is decided by
the fitness function. The particles reach to the desired solution by
updating their position and velocity according to the PSO
equations. In PSO, each individual is treated as a volume-less
particle in the D-dimensional space, with the position and
Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
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velocity of the ith particle represented as

xi ¼ ðxi1; xi2; . . .; xiDÞ ð7Þ

vi ¼ ðvi1; vi2; . . .; viDÞ ð8Þ

vidðkþ1Þ ¼w�vidðkÞþc1�rand1ðÞ�ðPid�xidÞþc2�rand2ðÞ�ðPgd�xidÞ

ð9Þ

xidðkþ1Þ ¼ xidðkÞþvidðkþ1Þ ð10Þ

These particles are randomly initialized over the search space
with initial positions and velocities. They change their positions
and velocities according to (9) and (10) where c1 and c2 are
cognitive and social acceleration constants respectively, rand1()
ticle swarm optimization with quantum infusion for system
0), doi:10.1016/j.engappai.2010.01.022
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and rand2() are two random functions uniformly distributed in the
range of [0,1] and w is the inertia weight introduced to accelerate
the convergence speed of PSO (delValle et al., 2008). Vector
Pi=(Pi1, Pi2,y,PiD) is the best previous position (the position giving
the best fitness value) of particle i called the pbest, and vector
Pg=(Pg1, Pg2,y, PgD) is the position of the best particle among all
the particles in the swarm and is called the gbest. xid, vid, Pid are
the dth dimension of vector of xi, vi, Pi. For the PSO equations to be
dimensionally correct, the velocity term in (10) is taken over a
unit time (Chakraborti et al., 2007). PSO is illustrated in the
flowchart in Fig. 3.

Quantum behaved particle swarm optimization (QPSO) was
introduced by Sun in 2004 (Sun et al., 2004a). According to the
uncertainty principle, position and velocity of a particle in quantum
world cannot be determined simultaneously. Thus QPSO differs
from standard PSO mainly in the fact that exact values of x and v

cannot be determined. In quantum mechanics, a particle, instead of
having position and velocity, has a wavefunction given by

cðr; tÞ ð11Þ

which has no physical meaning but its amplitude squared gives
the probability measure of its position in any one dimension r at
time t. The governing equation of quantum mechanics is the
Schrodinger’s equation given by

j_
@

@t
cðr; tÞ ¼ ĤðrÞcðr; tÞ ð12Þ

where H is a time-independent Hamiltonian operator given by

ĤðrÞ ¼�
_2

2m
r

2
þVðrÞ ð13Þ

where _ is Planck’s constant, m is the mass of the particle and Vp(r)
is the potential energy distribution (Mikki and Kishk, 2006). Based
on the probability density function, a particle’s probability of
appearing in position x can be determined. Therefore in QPSO, a
delta-potential-well based probability density function has been
used with center of the well at point J=(j1, j2,y, jD) in order to
avoid explosion and help the particles in PSO to converge (Sun
et al., 2004b). Assuming a particle in one-dimensional space
having its center of potential at J, normalized probability density
function Q and distribution function Df can be obtained (Sun et al.,
2005). Let y=x� j, then the form of this probability density
function is given as follows and depends on the potential field the
particle lies in:

Q ðyÞ ¼
1

L
e�29y9=L ð14Þ
Table 1
Study of Cases I and II.

Case I (Kru

Transfer function 1:25z�1�0

1�0:3z�1þ

Full order L 2

M 1

Model b0þb1z

1þa1z�1þ

Reduced order L 1

M 0

Model b0

1þa1z�1

Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
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Df ðyÞ ¼

Zy

�1

Q ðyÞdy¼ e�29y9=L ð15Þ

where the parameter L is the length of the potential field which
depends on the energy intensity and is called the creativity or
imagination of the particle that determines its search scope (Sun
et al., 2004b). L can be evaluated as the distance between the
particles’ current position and point J as follows:

L¼ 2b9J�x9 ð16Þ

The parameter b is the only parameter of the algorithm. It is
called the creativity coefficient and is responsible for the
convergence speed of the particle. In QPSO, search and solution
spaces are two unique spaces of different quality. So a mechanism
is necessary to map the position of a particle in the search space to
the solution space. This is referred to as ‘collapsing’ and is
achieved by applying the Monte Carlo simulation. This is
explained as follows (Sun et al., 2004a).

Let s be any random number uniformly distributed between 0
and 1/L. For a uniform random number u in the interval [0,1], s is
defined as

s¼
1

L
u ð17Þ

Now, equating (14) and (17), the following relation is
achieved:

u¼ e�29y9=L ð18Þ

y¼ 7
L

2
ln

1

u

� �
ð19Þ

The position equation is given as follows:

x¼ J7
L

2
ln

1

u

� �
ð20Þ

where the particle’s local attractor point J has coordinates given
by the following equation:

Jd ¼ a1Pgdþa2Pid ð21Þ

where a1=a/(a+b) and a2=b/(a+b), and a and b are two uniformly
distributed random numbers.

From (16) and (19), the new position of the particle is
calculated as

xðkþ1Þ ¼ JðkÞ7b9JðkÞ�xðkÞ9 ln
1

u

� �
ð22Þ

This delta-potential-well based quantum PSO is called the
QDPSO in Sun et al. (2004a). This has been improved further by
defining a mainstream thought (Sun et al., 2005) or the mean best
sienski and Jenkins, 2004) Case II (Ng et al., 1996)

:25z�2

0:4z�2

�0:2z�1�0:4z�2þ0:5z�3

1þ0:6z�1�0:25z�2þ0:2z�3

3

2
�1

a2z�2

b0þb1z�1þb2z�2

1þa1z�1þa2z�2þa3z�3

2

1

b0þb1z�1

1þa1z�1þa2z�2

ticle swarm optimization with quantum infusion for system
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Fig. 5. Pole zero plot for full order model of Case I.
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position, mbest, as

mbestðkÞ ¼
1

S

XS

i ¼ 1

PiðkÞ ¼
1

S

XS

i ¼ 1

Pi1ðkÞ; . . .;
1

S

XS

i ¼ 1

PiDðkÞ

 !
ð23Þ

where S is the size of the population, D is the number of
dimensions and Pi is the pbest position of each particle. Now the
position update equation in (22) is given as (24), where the
addition or subtraction is carried out with 50% probability:

xðkþ1Þ ¼ JðkÞ7b9mbestðkÞ�xðkÞ9 ln
1

u

� �
ð24Þ

By using (21) this can also be written as follows to show the
mutation on gbest:

xðkþ1Þ ¼ a1PgdðkÞþa2PidðkÞ7b9mbestðkÞ�xðkÞ9 ln
1

u

� �
ð25Þ

4. Case studies and results

Two different studies have been carried out for system
identification. In the first study, four benchmark IIR systems
between second and sixth order are considered for the case study.
Fig. 6. Error graph for Case II: (a) full order and (b) reduced order for 500

iterations.Fig. 4. Error graph for Case I: (a) full order and (b) reduced order for 500 iterations.
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These IIR systems are modeled using two different models, one
having the same order as the actual system and second having
less order than that of the actual system. These reduced order
cases pose challenge to the optimization algorithm in that they
produce multimodal error surface which has multiple minima. In
all cases, as the number of coefficients decreases, the degree of
freedom reduces and it becomes more difficult to identify the
actual system. In the second study, identification of dynamics of
four generators in a power system is considered. With pseudo-
random binary signal (PRBS) input to one of the generators, the
speed deviations on all of the four generators is measured. From
this input–output data, the transfer function of the four
generators for dynamics of interest is identified using PSO, DEPSO
and PSO–QI. Identification of IIR systems using PSO–QI is shown
in the flowchart in Fig. 3.
4.1. Study I

Each case is simulated using PSO, DEPSO (Luitel and Venaya-
gamoorthy, 2008a) and PSO–QI (Luitel and Venayagamoorthy,
2008b) in MATLAB on the same computer using the following
parameters. The PSO parameters used in the study are obtained
by systematic study of the effect of various parameters in
different case studies. The variation of the results with the
parameters is, however, not a part of the results shown in this
paper. The shown result is an average over 50 trials.

D=number of dimension representing the weights to be
optimized
Fig. 8. Error graph for Case III: (a) full order and (b) reduced order for 500

iterations.

Fig. 9. Pole-zero plot for full order model of Case III.

Table 2
Study of Case III (Shynk, 1989b).

Transfer function z�1�0:9z�2þ0:81z�3�0:729z�4

1�0:04z�1�0:2775z�2þ0:2101z�3�0:14z�4

Full order L 4

M 3

Model b0þb1z�1þb2z�2þb3z�3

1þa1z�1þa2z�2þa3z�3þa4z�4

Reduced order L 3

M 2

Model b0þb1z�1þb2z�2

1þa1z�1þa2z�2þa3z�3

Fig. 7. Pole-zero plot for full order model of Case II.

Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Particle swarm optimization with quantum infusion for system
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Fig. 11. Pole-zero plot for full order model of Case IV.

Table 3
Study of Case IV (Karaboga, 2005).

Transfer function 1�0:4z�2�0:65z�4þ0:26z�6

1�0:77z�2�0:8498z�4þ0:6486z�6

Full order L 6

M 6

Model b0þb1z�1þb2z�2þb3z�3þb4z�4þb5z�5þb6z�6

1þa1z�1þa2z�2þa3z�3þa4z�4þa5z�5þa6z�6

Reduced order L 5

M 5

Model b0þb1z�1þb2z�2þb3z�3þb4z�4þb5z�5

1þa1z�1þa2z�2þa3z�3þa4z�4þa5z�5

Fig. 10. Error graph for Case IV: (a) full order and (b) reduced order for 500

iterations.

B. Luitel, G.K. Venayagamoorthy / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]]8
P (population size)=25
c1, c2 (cognitive and social acceleration constants for PSO)=2
w (inertia weight)=linearly decreasing from 1.4 to 0
CR (crossover rate)=0.8
b=linearly increasing from 0.5 to 1
Number of inputs=50
Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
identification. Engineering Applications of Artificial Intelligence (201
Number of iterations=500
Maximum velocity=1.3
Maximum position=1.3
Number of trials=50
The coefficients are randomly initialized within the periphery

of the possible solution and the maximum velocity and position
are also restricted to 1.3 which is the maximum value of the
actual coefficients of the plant. The output of the plant is
subjected to a white Gaussian noise of �30 dB signal to noise
ratio.

The transfer functions and their implementation in two
different models for Cases I and II are shown in Table 1. Case I
is a second order system. The simulation results of two different
models for this case are shown in Fig. 4(a) and (b). The pole-zero
plot of the coefficients obtained for this transfer function is shown
in Fig. 5. Fig. 6(a) and (b) show the results of the third order
system studied in Case 2. Fig. 7 shows the pole-zero plot of the
coefficients obtained for the transfer function. Case 3 is a fourth
order IIR system shown in Table 2. The error graphs for the two
different models are shown in Fig. 8(a) and (b). The pole-zero plot
for this case is shown in Fig. 9. Table 3 shows the transfer function
of the plant and its models for the sixth order system studied in
Case 4. The results are shown in Fig. 10(a) and (b) and the pole-
zero plot in Fig. 11.

The comparison of performance of PSO, DEPSO and PSO–QI is
shown in Table 4 where minimum, average and standard
deviation of the results obtained from 50 trials over 500
iterations have been presented. These results show that
ticle swarm optimization with quantum infusion for system
0), doi:10.1016/j.engappai.2010.01.022
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Fig. 13. Error graph for: (a) Case III and (b) Case IV for 50 iterations.Fig. 12. Error graph for: (a) Case I and (b) Case II for 50 iterations.

Table 4
Full order model (500 iterations).

Case MSE (dB) Time (s)a

Min. Avg. Std. Min. Avg.

Case I PSO 7.102e�4 8.612e�4 5.074e�4 3.422 3.769

DEPSO 7.102e�4 7.278e-4 4.391e�5 2.547 3.166

PSO–QI 7.102e�4 7.102e�4 1.148e�7 2.984 3.227

Case II PSO 7.791e�4 0.001 5.222e�4 3.563 3.778

DEPSO 7.791e�4 9.480e�4 4.011e�4 2.703 2.826

PSO–QI 7.791e�4 9.215e�4 3.627e�4 3.281 3.432

Case III PSO 7.245e�4 0.003 0.003 2.609 3.404

DEPSO 7.245e�4 0.001 0.001 2.672 3.056

PSO–QI 7.245e�4 0.001 0.001 3.421 3.734

Case IV PSO 7.821e�4 0.011 0.014 0.938 2.240

DEPSO 7.623e�4 0.002 0.003 1.046 2.329

PSO–QI 7.984e�4 0.002 0.004 3.063 4.008

a Performed on the same computer for 500 iterations.
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although PSO–QI takes slightly more time to converge to the
global minimum, it converges to a lower MSE. Moreover, the
results show that PSO–QI is fairly consistent in its performance
and it deviates the least over a number of trials. The study is also
carried out for full order with 50 iterations. These results for Cases
I and II are shown in Fig. 12(a) and (b) and for Cases III and IV in
Fig. 13(a) and (b), respectively. Table 5 shows the comparison of
the performance of the three algorithms in 50 iterations. These
results also confirm the robustness of PSO–QI in its ability to
converge faster and to a higher fitness value. The similar results
for the reduced order case are shown in Table 6. These results also
indicate the better performance of PSO–QI over PSO and DEPSO.
Since mutation operation introduced by DE helps the DEPSO
algorithm to come out of the local minima, it finds the global
minimum faster, where PSO tends to get stuck. However, PSO–QI
has even better ability to overcome the local minima due to its
quantum operation based mutation on the global best particle
obtained from PSO.
Fig. 14. Input pseudo-random binary signal.
4.2. Study II

In this study, identification of generator dynamics in a power
system is carried out based on its input–output data with no prior
information about the structure of the system. The system is
implemented using (26) where x(k) and y(k) are the input and
Table 6
Reduced order model (500 iterations).

Case MSE (dB)

Min. Avg.

Case I PSO 0.006 0.006

DEPSO 0.006 0.006

PSO–QI 0.006 0.006

Case II PSO 0.004 0.089

DEPSO 0.004 0.010

PSO–QI 0.004 0.011

Case III PSO 0.005 0.008

DEPSO 0.005 0.007

PSO–QI 0.005 0.005

Case IV PSO 0.001 0.018

DEPSO 0.001 0.004

PSO–QI 0.001 0.003

a Performed on the same computer for 500 iterations.

Table 5
Full order model (50 iterations).

Case MSE (dB)

Min. Avg.

Case I PSO 9.448e�4 0.001

DEPSO 9.448e�4 0.001

PSO–QI 9.447e�4 9.988

Case II PSO 0.001 0.002

DEPSO 0.001 0.002

PSO–QI 0.001 0.001

Case III PSO 0.001 0.013

DEPSO 0.001 0.004

PSO–QI 8.353e�4 0.003

Case IV PSO 0.001 0.024

DEPSO 8.688e�4 0.007

PSO–QI 9.994e�4 0.004

a Performed on the same computer for 500 iterations.

Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
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output samples at time k. Ŷ ðkÞ represents the output obtained by
the designed system at instant k

ŶðkÞ ¼ a1xðkÞþa2xðk�1Þþa3xðk�2Þþb1yðk�1Þþb2yðk�2Þþb3yðk�3Þ

ð26Þ
Time (s)a

Std. Min. Avg.

7.149e�4 2.234 2.356

4.214e�4 2.125 2.326

4.085e�18 2.500 2.601

0.443 3.625 3.799

0.005 3.609 3.700

0.006 3.079 3.130

0.003 0.766 1.269

0.003 0.859 1.392

0.001 2.312 2.700

0.042 2.281 2.766

0.004 2.515 2.678

0.001 3.375 3.627

Time (s)a

Std. Min. Avg.

5.011e�4 0.218 0.261

5.806e�4 0.234 0.302

e�4 1.222e�4 0.265 0.275

0.003 0.234 0.264

0.003 0.235 0.263

5.674e�4 0.297 0.343

0.045 0.233 0.269

0.002 0.250 0.275

0.002 0.343 0.371

0.032 0.234 0.257

0.010 0.250 0.267

0.006 0.375 0.399
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This can be written into a transfer function as follows:

YðzÞ

XðzÞ
¼

a1þa2z�1þa3z�2

1�b1z�1�b2z�2�b3z�3
ð27Þ

eðkÞ ¼ yðkÞ�ŶðkÞ ð28Þ

After filtering the input and the delayed output data, the
output of the system is compared with the actual output and the
MSE between these outputs is taken as the fitness function. Using
Fig. 15. Training and testing

Fig. 16. Training and testing p

Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
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the fitness information, the algorithms continuously adjust the
coefficients of the filters so as to minimize the error between the
actual output of the system and the output of the designed system
given by (28). In this study, four generators (G1–G4) of a two-area
power system (Venayagamoorthy, 2007) are considered. The
generator G1 is subjected to a PRBS input and speed deviation
(dSpeed) of the four generators is recorded for 20 s of input data
(3125 samples). The first 10 s of data is taken for identification of
the system (training) and the next 10 s of data is used to verify the
plots for G1 using PSO.

lots for G1 using DEPSO.
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Fig. 17. Training and testing plots for G1 using PSO–QI.

Fig. 18. Training and testing plots for G3 using PSO.
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system output (testing). The training and testing plots for
different generators are shown in Figs. 14–21. In this study, the
dimension of the system is 6, each dimension representing the
coefficient of the transfer function.

The input PRBS signal is shown in Fig. 14. The training and
testing plot for G1 obtained using PSO, DEPSO and PSO–QI are
presented in Figs. 15–17, respectively. Figs. 18–20 show the
training and testing plots for G3 obtained using PSO, DEPSO and
PSO–QI, respectively. Units in Figs. 15–20 for dspeed and time are
Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
identification. Engineering Applications of Artificial Intelligence (201
rad/s and s respectively. The minimum and average values of
fitness for the three algorithms obtained from the study are
presented
in Table 7. The standard deviation of the minimum values over
50 trials is also presented in the table. The results show that
PSO–QI is more consistent in identifying the dynamics of
the system in every trial. Although PSO and DEPSO could also
identify the system transfer function and predict the speed
deviation, they were not able to do so in every trial. PSO and
ticle swarm optimization with quantum infusion for system
0), doi:10.1016/j.engappai.2010.01.022
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Fig. 19. Training and testing plots for G3 using DEPSO.

Fig. 20. Training and testing plots for G3 using PSO–QI.

B. Luitel, G.K. Venayagamoorthy / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]] 13
DEPSO also suffered from the problem of identifying an out of
phase system.

Although the fitness obtained by PSO–QI is better than PSO, it
has to go through more number of fitness evaluations.
Each iteration of PSO corresponds to P fitness evaluations while
that of PSO–QI corresponds to P+1 fitness evaluations. However, if
more number of pbest particles is considered for quantum
operation, the fitness evaluations will increase. In these studies,
all of the pbest particles are considered for quantum operation
Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
identification. Engineering Applications of Artificial Intelligence (201
and hence the number of fitness evaluations per iteration is 2P.
However, given the equal number of fitness evaluations, standard
PSO does not show improvements in fitness as is shown in
Fig. 21. The figure also demonstrates how the PSO–QI converges
to a lower fitness in less number of iterations, thus showing
its promises in online applications, and how the fitness of
PSO does not meet that of PSO–QI regardless of the number
of fitness evaluations (proportional to the number of itera-
tions).
ticle swarm optimization with quantum infusion for system
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Fig. 21. Comparison of PSO and PSO–QI in terms of fitness.

Table 7
Comparison of PSO, DEPSO and PSO–QI for system identification.

PSO DEPSO PSO–QI

Training Testing Training Testing Training Testing

G1 Min. 0.0288 0.0231 0.0090 0.0090 0.0014 0.0011

Avg. 0.3558 0.2790 0.3859 0.3028 0.0098 0.0084
Std. 0.2610 0.2046 0.2828 0.2212 0.0058 0.0054

G2 Min. 0.0576 0.0492 0.0075 0.0057 8.0904e-4 7.0726e-4

Avg. 0.3843 0.3219 0.2675 0.2237 0.0085 0.0071
Std. 0.2463 0.2079 0.2386 0.2011 0.0057 0.0046

G3 Min. 0.0126 0.0127 0.0024 0.0021 0.0020 0.0022

Avg. 0.3417 0.3156 0.2183 0.1973 0.0200 0.0190
Std. 0.2528 0.2365 0.2553 0.2369 0.0773 0.0726

G4 Min. 0.0272 0.0256 0.0025 0.0026 7.8092e-4 7.7778e-4

Avg. 0.3394 0.3082 0.2807 0.2543 0.0089 0.0086
Std. 0.2356 0.2156 0.3020 0.2758 0.0120 0.0111
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5. Conclusion

A hybrid particle swarm optimization with quantum infusion
(PSO–QI) algorithm for identification of IIR systems and generator
dynamics in a multimachine power system has been presented in
this paper. The performance of PSO–QI is compared with that of PSO
and a hybrid algorithm of PSO and differential evolution (DEPSO).
These studies performed show that swarm, evolutionary and
quantum behaved algorithms can be applied in system identifica-
tion and hybrid algorithms perform better by combining the best
features of the participating individual algorithms. The lower values
of mean squared error and standard deviation show that PSO–QI is
the best algorithm among the three for system identification. The
results show that PSO–QI converges faster and with more
consistency than the other algorithms, thus showing its promise
in online implementation. However, it is computationally complex
due to the increased number of fitness evaluations and hence a
trade-off between time complexity and fitness is necessary.
Please cite this article as: Luitel, B., Venayagamoorthy, G.K., Par
identification. Engineering Applications of Artificial Intelligence (201
To confirm its robustness and scalability, PSO–QI needs to be
applied to many different benchmark problems and dynamical
real world applications. For the authors’ future work, the
algorithm will be tested on different types of applications,
including online and hardware implementation, using different
fitness functions.
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