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Abstract

Training a single simultaneous recurrent neural network (SRN) to learn all outputs of a multiple-input-multiple-output
(MIMO) system is a difficult problem. A new training algorithm developed from combined concepts of swarm intelligence
and quantum principles is presented. The training algorithm is called particle swarm optimization with quantum infusion
(PSO-QI). To improve the effectiveness of learning, a two-step learning approach is introduced in the training. The
objective of the learning in the first step is to find the optimal set of weights in the SRN considering all output errors.
In the second step, the objective is to maximize the learning of each output dynamics by fine tuning the respective SRN
output weights. To demonstrate the effectiveness of the PSO-QI training algorithm and the two-step learning approach,
two examples of an SRN learning MIMO systems are presented. The first example is learning a benchmark MIMO
system and the second one is the design of a wide area monitoring system for a multimachine power system. From the
results, it is observed that SRNs can effectively learn MIMO systems when trained using the PSO-QI algorithm and the
two-step learning approach.
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1. Introduction

Simultaneous recurrent neural networks (SRNs) are a
class of neural network architectures where the recurrence
is instantaneous (Geib and Serpen, 2004). SRN is appro-
priate for approximating complex nonlinear systems with
less number of neurons because it models the response
of a dynamic nonlinear system even with fixed weights.
Furthermore, SRNs have the capability of approximating
non-smooth functions which cannot be approximated by
conventional Multilayer Perceptrons (MLPs). An Elman
SRN has its feedback from the hidden layer output to the
context layer inputs and in this study it is represented in
vector notation as:

H(k, n) = f(A ∗ I(k) + B ∗ H(k, n − 1) + K) (1)

O(k) = g(C ∗ H(k,R) + K ′) n = 1, 2, . . . , R (2)

where, I is the set of inputs, H is the set of neuron outputs
from the hidden layer and O is the set of outputs from the
output layer. A is the set of weights from input layer to
the hidden layer, B is the set of weights from context layer
to the hidden layer, C is the set of weights from hidden
layer to the output layer, n is the index of internal recur-
rence, k is the index of the input sample, R is the number
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of internal recurrences, K and K ′ are the biases and f and
g are neuron activation functions in the hidden and output
layers respectively.
Another important feature of recurrent neural networks
is their ability to implement associative memory (Michel
and Farrell, 1990). Use of various architectures of neu-
ral networks have been studied for associative memory
(Kwan, 2002). Unlike other associative memories that
store patterns, this work demonstrates SRNs that store
dynamics that is stimulated by a stimulus pattern that
has the same dynamics. Since SRNs have connectivities
from its hidden or output layer to the input, this architec-
ture helps them store information and hence act as asso-
ciative memory. Although SRNs are powerful neural net-
work architectures, the training process is intensive and
more difficult when there are multiple outputs to learn
i.e. learning of multiple-input-multiple-output (MIMO)
system. Traditional training algorithms such as back prop-
agation through time suffer from local minima and hence
it is hard to train SRNs using these techniques because of
the recursive calculations involved (Cai et al., 2007). Com-
putational intelligence (CI) based algorithms have gained
popularity in training of neural networks because of their
ability to find a global solution in a multi-dimensional
search space. Swarm and evolutionary based algorithms
such as Particle Swarm Optimization (PSO) (Del Valle
et al., 2008) have shown promises in training of SRNs.
In this study, quantum principle obtained from Quantum
PSO (QPSO) (Sun et al., 2004) has been combined with
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standard PSO to form a new hybrid algorithm called as
PSO with Quantum Infusion (PSO-QI). For training, a
two step learning approach is introduced to improve the
ability of SRNs to learn multiple outputs.

2. PSO-QI Algorithm and Two-Step Learning

2.1. Particle Swarm Optimization with Quantum Infusion

PSO-QI is a hybrid algorithm that uses the quantum
principle from QPSO to create a new offspring in PSO. Af-
ter the positions and velocities of the particles are updated
using standard PSO equations, a randomly chosen particle
from PSO’s pbest (the previous particle position giving the
best fitness value) population is utilized to carry out the
quantum operation; and thus, create an offspring by mu-
tating the gbest (the best particle among all the particles
in the swarm). The fitness of the offspring is evaluated
and the offspring replaces the gbest only if it has a bet-
ter fitness. This ensures that the fitness of the gbest is
equal to or better than its fitness in the previous iteration.
Thus, it is improved and pulled toward the best solution
over iterations.
According to the uncertainty principle, position and veloc-
ity of a particle in quantum world cannot be determined
simultaneously. Thus QPSO differs from standard PSO
mainly in the fact that exact values of x and v cannot
be determined. Hence the probability of finding a parti-
cle at a particular position in the quantum search space
is mapped into its actual position in the solution space
by a technique called “collapsing”. In Quantum Delta-
Potential-Well based PSO (QDPSO) (Sun et al., 2004), a
delta potential well based probability density function is
used to avoid explosion and help the particles converge.
By using Monte Carlo Simulation (Sun et al., 2004), the
position equation in QDPSO is given by (3):

x(k) = J(k) ±
L(k)

2
ln(1/u) (3)

where u is a uniform random number in the interval [0,1].
The particle’s local attractor point J has coordinates given
by the following equation:

Jd(k) = α1Pgd(k) + α2Pid(k) (4)

where Pid is the ith pbest particle in dth dimension and
Pgd is dth dimension of the gbest particle obtained from
PSO. L is the length of the potential field given by:

L(k) = 2β|J(k) − x(k)| (5)

The parameter β is the only parameter of the algorithm.
It is called the creativity coefficient and is responsible for
the convergence speed of the particle.
The Mean Best Position, mbest, is defined as:

mbest(k) =
1

S

S
∑

i=0

Pi(k) =

(

1

S

S
∑

i=0

Pi1(k), . . . ,
1

S

S
∑

i=0

PiD(k)

)

(6)

where S is the size of the population, D is the number of
dimensions and Pi is the pbest position of each particle. In
QPSO, J in (5) is replaced by mbest to form (7) as follows:

L(k) = 2β|mbest(k) − x(k)| (7)

By using (4) this can also be written as follows to show
the mutation on gbest, where the addition or subtraction
is carried out with 50% probability:

x(k+1) = α1Pgd(k)+α2Pid(k)±β|mbest(k)−x(k)|ln(1/u)
(8)

In PSO-QI, the position update equation (8) has been used
to mutate the gbest particle obtained from PSO. The pseu-
docode for the PSO-QI algorithm is as follows:

Initialize position x, velocity v and let pbest=x
repeat

for i = 1 to populationsize do

Evaluate fitness
if fitness (i) < fitness (pbest) then

pbest = x and gbest = min(pbest)
end if

Update v and x using standard PSO equations
end for

Calculate mbest using (6)
Select a random particle r
for d from 1 to dimensionsize do

α1, α2 = rand(0, 1)
J = (α1 ∗ Prd + α2 ∗ Pgd)/(α1 + α2)
L = 2β ∗ |mbest − xrd| using (7)
if rand(0, 1) > 0.5 then

using (3)
offspring = J − L

2 ∗ ln(1/u)
else

offspring = J + L
2 ∗ ln(1/u)

end if

if fitness (offspring)<fitness(gbest) then

gbest = offspring
end if

end for

until termination criteria is met.

2.2. Two-Step Learning

In this training approach, SRN is trained for all net-
work weights in Step 1. After the first step, input weights
are kept fixed and output weights are fine tuned to maxi-
mize the learning of the respective output dynamics. This
means, for M outputs, M searches are carried out. This
drastically reduces the dimension of the problem in Step 2,
and hence lesser computations and a fast tuning process.
For an Elman Network, the hidden node outputs may be
initially computed and fixed in Step 2, thus further re-
ducing the computations. Step 1 can be viewed as global
exploration search and Step 2 a local exploitation search.
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3. Examples

SRNs training two MIMO systems are illustrated in
this letter. Mean squared error (MSE) between the ac-
tual and the predicted output is considered as the fitness
function of a particle. For Step 1, it is given by (9):

MSE =
1

M

M
∑

m=1

MSEm (9)

where M is the number of outputs and MSEm given by
(10):

MSEm =
1

N

N
∑

k=1

(Ym(k) − Ŷm(k)) (10)

is the fitness of Step 2, where Yi(k) is the actual output
of the system and Ŷi(k) is the predicted output from the
SRN at sample k and N is the number of samples. The
PSO parameters used in the study are: c1, c2 = 2, w is
linearly decreasing from 0.9 to 0.4 and a population size of
30 particles. β parameter of PSO-QI is linearly increasing
from 0.5 to 1. The results of PSO-QI are compared with
that obtained using PSO. In both cases, the networks are
trained for 200 iterations in Step 1 and 25 in Step 2.

3.1. Case I: Identification of MIMO System

The first case studied is a MIMO plant given by the
following equation (Kumpati and Kannan, 1990):

[

y1(k + 1)
y2(k + 1)

]

=

[

y1(k)
1+y2

2
(k)

y1(k)y2(k)
1+y2

2
(k)

]

+

[

u1(k)
u2(k)

]

(11)

where ui(k) and yi(k) are the ith input and output at in-
stant k. The inputs to the SRN are the present values
of system inputs and outputs. The SRN outputs are the
one-step ahead prediction of the system outputs. An SRN
of 4 inputs, 10 hidden nodes and 2 output nodes is then
trained on 100 samples of uniform random numbers be-
tween [0,1] and tested on 100 data samples of input vector
[sin(2πk/25), cos(2πk/25)]. The dimension of the SRN
training problem is 160 and 10 in Steps 1 and 2 respec-
tively. The testing results obtained are shown in Figs. 1
and 2. The MSEs are shown in Table 1.

3.2. Case II: Design of a Wide Area Monitoring System

In the second case study, a wide area monitor (WAM)
used for the two area four machine power system described
in (Venayagamoorthy, 2007) and shown in Fig. 4 is consid-
ered. The WAM is modeled by an SRN with 8 input nodes,
15 hidden nodes and 4 output nodes (405 weights). The
inputs to the SRN are the current deviations in reference
voltage V ref , caused by the pseudorandom binary signal
excitations and speed deviations of the four machines. The
outputs are the one-step ahead predictions of their speed
deviations. The operating conditions are similar to (Ve-
nayagamoorthy, 2007). The loads are modified to have a

power transfer of 510 MW during training and 458 MW
during testing from Area 1 to 2. The voltage of all the
generators is 1.03 pu in both operating conditions. The
dimension of the SRN training problem is 405 and 15 in
Step 1 and 2 repectively. The outputs of the SRNs for two
generators (G1 and G4) are shown in Figs. 5 and 6. The
fitness curve obtained for the two step process is shown
in Fig. 3. The results show improvement from PSO to
PSO-QI and from Step 1 to Step 2. The MSEs are shown
in Table 1.

4. Conclusion

MIMO SRNs are trained using PSO-QI by using a two-
step learning approach. The results of the study show
that hard-to-train MIMO SRNs can be successfully trained
with better accuracy. Due to the dimension reduction in
the second step, this method of SRN training can be use-
ful for large number of inputs and hence highly scalable.
The network is trained for less iterations in the second
step providing a significant improvement in fitness for a
small overhead in time. Although implicit studies have
not been carried out to see the associative memory prop-
erty of SRNs, their ability to store system dynamics in
a similar fashion has been demonstrated, which leads the
authors to believe their ability to be used for associative
memory in their future works.
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Figure 1: Output of SRN for Y1 in (a) Step 1 and (b) Step 2
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Figure 2: Output of SRN for Y2 in (a) Step 1 and (b) Step 2
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Figure 3: Comparison of fitness in Step 1 and 2

Table 1: MSE results for the case studies
PSO PSO-QI

Step 1 Step 2 Step 1 Step 2

Case I
Y1 1.2494 1.1487 0.7132 0.6407
Y2 0.3150 0.2996 0.1427 0.1012

Case II

G1 0.0147 0.0075 0.0188 0.0057
G2 0.0281 0.0111 0.0218 0.0068
G3 0.0225 0.0118 0.0181 0.0067
G4 0.0344 0.0167 0.0319 0.0105

Figure 4: Wide area monitor in a two area four machine system
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Figure 5: SRN output for G1 (Area 1) in (a) Step 1 and (b) Step 2
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Figure 6: SRN output for G4 (Area 2) in (a) Step 1 and (b) Step 2
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