DSOPF Control for Power Systems with High Variability

Jacqi Liang, Ganesh K. Venayagamoorthy and Ronald G. Harley

DSOPF Control for Power Systems with High VariabilityTo achieve a high penetration level of intermittent renewable energy, power system stability and security need to be ensured dynamically as the system operating condition continuously changes. A DSOPF control algorithm using adaptive critic designs (ACDs) is proposed as a solution to control the smart grid in an environment with high short-term uncertainty and variability.

Damping Electromechanical Oscillations in Large-Scale Power Systems Using Intelligent Aggregated Control

Diogenes Molina, Ganesh Kumar Venayagamoorthy and Ronald G Harley

Poorly damped oscillations can constraint the safe operating region of power systems, prevent more economical operation, and increase the probability of wide-spread blackouts. Controllers capable of monitoring and injecting signals at multiple generating stations across the system can help mitigate these oscillations and improve overall performance. Methodologies for designing such controllers using approximate dynamic programming system aggregation techniques are proposed.